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1 Abstract

In the flutter or forced response analysis of a

turboma_chine blade row, the blade row in question is

commonly treated as if it is isolated from the neighboring
blade rows. Disturbances created by vibrating blades are

then free to propagate away from this blade row without

being disturbed. In reality, neighboring blade rows will

reflect some portion of this wave energy back toward the

vibrating blades, causing additional unsteady forces on

them. It is of fundamental importance to determine whether

or not these reflected waves can have a significant effect on

the aeroelastic stability or forced response of a blade row.

Therefore, a procedure to calculate intra-blade-row unsteady

aerodynamic interactions has been developed which relies

upon results available from isolated blade row unsteady

aerodynamic analyses. In addition, an unsteady

aerodynamic influence coefficient technique is used to

obtain a model for the vibratory response in which the

neighboring blade rows are also flexible. The flutter

analysis shows that interaction effects can be destabilizing,

and the forced response analysis shows that interaction

effects can result in a significant increase in the resonant

response of a blade row.

2 Nomenclature

a speed of sound
A nondimensional acoustic wave coefficient

c chord

G nondimensional gust coefficient

i

Im imaginary part
M relative Mach number
R nondimensional reflection coefficient

Re _ real part

s blade tangential spacing
T nondimensional transmission coefficient

Copyright 01993 by AIAA, Inc. No copyrightis asserted in the
UnitedStalesunder Title 17,U.S. Code. The U.S. Government
has a royalty-free liomse to exercise all rights under the
copyright claimed herein for Governmental purposes. All other
rights arere_rved by the copyrightowner.

U rotor wheel speed

V fluid velocity

a angle of blade oscillation

15 interblade phase angle

8 axial gap between neighboring blade rows

tangential coordinate

axial coordinate

p fluid density

co angular frequency

reduced frequency, coclV

3 Introduction

In the flutter analysis of a turbomac]fine blade row, the

blade row is commonly assumed to be isolated -

disturbances created by the vibrating blades are free to

propagate away from the blade row without being disturbed.

Thus any reflections of these outgoing waves by other
structural members o_r nonuniformities in the mean flow

field are neglected. Although the forced response problem

is by definition concerned with blade row interaction (with

response to inlet distortion an important exception), forced

response analyses also typically neglect any reflections of

outgoing waves. However, in an engine environment,

structural elements such as neighboring blade rows or struts

and nonunfformities in the mean flow field will generally

reflect some of this wave energy back toward the vibrating

blades, causing additional unsteady forces on them.
Whether or not these reflected waves can significantly affect

the aeroelastic stability or forced response of a blade row is a

question of fundamental importance.

Several investigations have focused on the unsteady

aerodynamic interaction between two rigid blade rows. Kaji

and Okazaki (1970) investigated the unsteady aerodynamic

interaction of two blade rows for the purpose of predicting

rotor-stator interaction noise. They obtained a simultaneous

solution to the unsteady lift distributions on both of the

blade rows. Hanson (1992) modified Smith's (1972)

isolated blade row unsteady aerodynamic analysis to predict

rotor-stator interaction noise, essentially extending Kaji and
Okazaki's work to include effects of frequency scattering

and mean flow turning by the blade rows. For a

counter-rotating propfan in incompressible flow, Chert and
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Williams (1991) used a panel method to determine the

unsteady loads on rigid propeller blades. From the
point-of-view of the present investigation, all of these
investigations are somewhat limited because they did not
delve into the aeroelastic problem and they were limited to
two blade rows.

One investigation that did consider the aeroelastic
effects of interactions of a vibrating blade row and an

adjacent structure was that of Williams, Cho and Dalton
(1991). A three-dimensional linearized compressible panel
method was used to calculate the unsteady aerodynamics of
a ducted fan. The aeroelastic analysis allowed flexibility of
both the fan and the duct. The duct was found to have a

destabilizing effect on the fan.

A n.umber of time-accurate solutions to the Euler and

Navier-Stokes equations for rotor-stator interaction have

been presented, e.g., Rai (1987), Jorgensen and Claim
(1989), Giles (1990). Due to the large computing time

required to obtain solutions for just two blade rows,
time-marching codes such as these axe not practical for
routine aeroelastic analysis purposes.

The purpose of this paper is to investigate the effects of
blade row interaction on flutter and forced response. A
model for interaction between any number of blade rows is
proposed which reties upon unsteady aerodynamic
coefficients obtained from isolated blade row unsteady
aerodynamic analyses. This allows the use of

computationally-efficient linearized analyses, which are
currently favored for turbomachinery aeroelastic predictions,
for the analysis of multiple blade row unsteady aerodynamic
interactions.

The lineaxized analyses are generally capable of
providing solutions for the unsteady blade forces and the
outgoing waves generated by two classes of disturbances:
(1) blade motion and (2) incoming waves such as acoustic

and vorticity waves. Thus the unsteady aerodynamic
coefficients which quantify the wave reflection and
transmission characteristics of the (rigid) blade rows, as
required to aerodynamically couple the blade rows, are
provided by the linearized unsteady aerodynamic analyses.
In addition, the response coefficients due to blade motion
allow the calculation of influence coefficients which express

the unsteady forces on one blade row due to the motion of
another. By combining the various influence coefficients
with equations of motion for each of the blade rows, a
system of equations may be obtained which models what
will be referred to as the 'dynamic coupling' of flexible blade
rOWS.

In this paper, a model for unsteady aerodynamic
interaction between any number of blade rows is developed.

The coupled equations of motion for the flexible blade rows,

which rely upon unsteady aerodynamic influence
coefficients for the intra-blade row coupling, are derived. A

system of linear equations is found for the unsteady
aerodynamic influence coefficients. Whitehead's subsonic
flat plate cascade analysis, LINSUB (Whitehead, 1987), is
used to provide the unsteady aerodynamic input for the
influence coefficient solution although this model is suitable
for use with the predictions of more sophisticated isolated
blade row analyses which account for nonuniform mean

flow fields (e.g., Verdon (1990), Hall and Clark (1991),
Fang and Atassi (1993)). Before applying this technique to
aeroelastic problems, the predictions of the unsteady
aerodynamic model are compared with those of Kaji and
Okazald for outgoing acoustic wave amplitudes due to
rotor-stator interaction. Then the model is used to

investigate the effects of blade row interaction on the flutter
and forced response of systems of three blade rows.

4 Analysis

4.1 Equation of motion

A single degree-of-freedom model for torsional
oscillation of an isolated blade row will be used to account

for the effect of blade row interaction on the vibratory

response of a row of identical blades. From Chiang (1988),
the equation of motion for the small amplitude torsional
oscillation of a two-dimensional section of a reference blade

may be expressed as

d2_ • 2- --

l--d_- + (1 + 2tg)io3,,ct = M (1)

= _(t) is the angle of oscillation, I is the mass moment of
inertia about the elastic axis, g is the structural damping

coefficient for torsion and o3, is the u,ndamped natural
frequency for this mode of oscillation. M is the unsteady
aerodynamic moment per unit span about the elastic axis.

Simple harmonic motion at frequency co and a fixed
interblade phase angle is assumed. Let the oscillation angle
for a reference blade be _(t)= e.eiot and the unsteady

aerodynamic moment be M(t)= _[e iot. Substituting these

into Equation 1 and differentiating gives

[-lo3 2 +(1 +2ig)lo3_]oL =M (2)

For the purpose of calculating 37/', the unsteady

aerodynamic disturbances are assumed to be small relative
to an inviscid, subsonic mean flow, resulting in a linear
problem for the first order unsteady disturbance field. In
this investigation, the unsteady disturbances are limited to
acoustic and vorticity waves. Because the unsteady
disturbance field is linear, the unsteady aerodynamic

moment 2_/ may be determined by the superposition of

motion-dependent and motion-independent parts.
TypicaI.ly, these moments are calculated under the



assumption that the blade row whose dynamic response is

being analyzed is isolated from any other blade rows.
Consider, for example, the response of a stator embedded in

a multistage turbomachine to the wakes of an upstream
rotor. The unsteady aerodynamic coefficients are calculated
based on a wake profile specified at the stator leading edge
locus and the tangential velocity of the rotor. As a result of

the unsteady interaction of the wakes with the stator, waves
are created which propagate away from the stator: acoustic
waves propagate both upstream and downstream, and

vorticity waves convect downstream. If the stator is treated
as an isolated blade row, as shown schematically in Figure

1, these waves are free to propagate away from the stator
undisturbed. In reality, these waves will impact neighboring
blade rows, Figure 2. Even ff the neighboring blade rows
are perfectly rigid, they will emit additional acoustic and
vorticity waves in response to the waves from the stator, and
these waves, in turn, may further load the stator, which then
emits more waves in response, and so on. Through these
waves the blade rows are aerodynamically coupled. The
question is, then, does this aerodynamic coupling between
the blade rows have a significant effect on the aeroelastic
response of the stator?

One may carry this a step further and consider the
vibratory response of the neighboring blade rows to the

waves initiated by the stator/wake interaction. By allowing
all of the blades to be flexible, they will respond by vibrating

and emitting additional waves which will depend upon their
vibrations. These motion-generated waves will further load
the stator and result in additional waves ad infinitum. By

allowing all of the blade rows to be flexible, the blade rows

become dynamically coupled. Thus a second related
question is, can the dynamic coupling of the blade rows
significantly affect the vibratory response of the primary
row?

Since the unsteady aerodynamic problem has been
assumed to be governed by a system of linear equations, the
aerodynamic blade row interactions can be expressed as
nondimensional aerodynamic influence coefficients. Let

C:, be the nondimensional moment coefficient for the j-th
blade row due to oscillation of the k-th blade row which

includes effects due to wave interaction (i.e., reflection and
transmission of acoustic waves, shed vorticity) with the
other non-vibrating blade rows. Thus C_. is the moment

coefficient on thej-th blade row due to its own oscillations.
These coefficients can be used to dynamically couple any

number of blade rows. For a system of n blade rows

restri_ed to torsional oscillation, Equation 2 will be applied
to each blade row. The unsteady aerodynamic influence

coefficients are used to express the moment in Equation 2 as
the linear combination of the influences of all of the blade

rows. Assuming that the forced response of the j-th blade

row is being investigated, the unsteady aerodynamic
moment on a reference blade of that row is

[CG]j,_' + [CG];:_ +. _" [CG]_,_). (3).. +[ccbs _ +... +

pj is the gas density, Vj is the relative inlet velocity and cj

is the chord for blade rowj. ct_ is the complex-valued angle

of oscillation of the reference blade of row k. [CG]/k is the

nondimensional moment coefficient for row j due to a gust

acting on row k with upwash wk - typically [CG]jk is used to

model the effects of viscous wakes. Substituting Equation 3
into Equation 2 then rearranging into a nondimensional
form results in

cjl_l + c,2_ +...

___ ( . co:j_+c_]_÷_c°irj Ixill- (1 + 2'gj) c-7]

... - -_--_z[CG]# (4)
k=l

ojcjwhere _j-="V7"/ is the reduced frequency, rj= is

the nondimensioual radius of gyration of the blade section

m---L - is the mass ratio of that section. Letting
and p.j- 7tp(cy/2)2

2 2
where yj = co,/coj, Equation 4 becomes

- _ _[CG]jk (5)

The only relevant values of [CG]#are those with the

frequency coj. In many cases, the gusts acting at any row
k;_j will not result in excitation of row j at coj, hence

[CG]/, = 0 for k ;_jand Equation 5 becomes

-g[CGlj_. (6a)

In this case, the equation of motion for a blade row k ,jis

Ck_O_x+ ... +(S_+C_,_+ ... + C_,,c_, = -_[CG]_j. (6b)

Using Eq. 6a for blade row j and Eq. 6b for the
remaining n-1 blade rows, a linear system of equations is
obtained which may be solved for the dynamics of these
blade rows due to a gust acting on rowj. This system may
be expressed as

Ax=B (7)

where
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A_

and

Dl C12 ... C I(,,-i)CI,

C:_ D2 ... C_I) C_

: : ".. : :

cjl cj: ...Dj Cj< -I Cj,
: : ". : :

C(,,-I)_C(.-q)2 .-- D,,-i C(,,-I),,

Cnl Cn2 ... Cn(n.-l) Dn

Dj=sj+c 

x= [cq,ct2.....ctj.....ct,,_l,eL.]r

 [CGhj,..., [CG]jj,B = -[y[CC]V, ...,

wj w# T
_[CG](.__)j,_[CG]j (10)

Specifying_ inEquation7 resultsina homogeneous

systemappropriatefordeterminationofthesystemstability:

Ax=0 (ll)

A meaningfulsolutionexistsonlyifthedeterminantofthe

coefficient matrix A is equal to zero.

For any blade row k, the structural coefficients
rk, I_kand gk are assumed to be known. To investigate the

stability of a particular row, row j, _j is chosen and this,
along with the geometry and mean flow field, sets the values
of _k for the other blade rows (see Appendix B). The

frequency ratios 7k are unknown, but they may be expressed
asafunctionsofT/:

2 2 2
03 uk 03 uj 03i

'Yk = 2
03 ui 032 032

= 2 J 2"

(_ uj 03k

co,k and co_/are assumed to be known, and the ratios cojcok
will also be known due to their dependence on known

parameters. Thus the determinant of the coefficient matrix
yields a polynomial of degree n in Tj which may be solved

for7/.

The system stability is determined by the values of 7/.
Since

ico__.L= i (13)

and _(t) = ob-e_'Jt, Re(i/_)>0 indicates growing

oscillations for blade row j and blade rows k (through the

dependence of 03k on c%.)and therefore system instability or

flutter. Im(i/_'7) is the ratio of the blade rowj oscillation

frequency to its natural frequency.

4.2 Coupled blade row unsteady aerodynamics
(Sa)

Expressions for the unsteady aerodynamic influence
coefficients will now be developed. The mean flow field is
assumed to be subsonic, and only those acoustic waveS

which propagate unattenuated will be considered. Blade
row geometry definitions and flow field definitions are

(Sb) shown in Figure 3.

(9) Assume that blade row j is oscillating harmonically

with unit amplitude at frequency co/ and interblade phase
angle 13j. Due to these oscillations, acoustic waves

propagate both upstream and downstream, and vorticity
waves are convected downstream. As shown in Appendix

A, acoustic waves will propagate unattenuated through a
uniform flow field of Mach number M<I only if the

tangential wavenumber m (i.e., the rl component of the
wavenumber) satisfies

m _,_(Mn + 1-f"_ )i -_ ")" (14)

M_ and Mn are the _ and 11 components of the Mach
number, co is the frequency and a is the speed of sound. If
this condition is met, two propagating acoustic waves will

be produced with tangential wavenumber m, one
propagating upstream and the other downstream. The (-)
sign in Equation 14 corresponds to the upstream-runr/ing
wave and + corresponds to the downstream-running wave;
the < symbol corresponds to the + and the > corresponds to
the (-). These waves are said to be superresonant or cut-on.
Otherwise, the waves decay exponentially with axial
distance and are said to be subresonant or cut-off. To be

consistent with the interblade phase angle 13j,m must satisfy
(12)

msj=13j+2m', r=0, +1, +2 .... (16)

where sj is the spacing ofthe rowj blades. As shown in the

Appendix, scattering of these waves at the other blade rows
results in waves returning to row j which are generally not
at the frequency of interest. Although these waves might
eventually be scattered back to the frequency of interest, the
scattered waves will be neglected.

Let the waves generated by the motion of row j be

denoted G_j for the gust or vorticity wave, AM, j for the

upstream-traveling acoustic wave and A_/ for the

downstream-traveling acoustic wave. Superscripts of (-) and

(+) are used to indicate the directions of acoustic waves, (-)
being a wave going toward --_ (upstream) and (+) being
toward 4,oo (downstream). To avoid unnecessary



complications in the present explanation, acoustic waves are
assumed to propagate unattenuated in both the upstream and
downstream directions for only one tangential wavenumber
consistent with the interblade phase angle. Assuming that a

dynamic steady state is reached for all the resulting waves,
each blade row k will have the net effects of three different

incoming waves acting upon it, a gust, Gt.k, an

upstream-running acoustic wave, Ai, _, and a

downstream-running acoustic wave, AI_. The outgoing

waves at row k are linearly related to the incoming waves by
the various reflection and transmission coefficients of the

blade row. For example, the outgoing upstream-muning
acoustic wave will be

• + 4"4. --Ao.t=ALtT_k+AI.t.Rt Gl.tAG.k (17)

where,for row k. _ isthe transmissioncoefficientfor

upstream-travelingacousticwaves,R_ is the reflection

coefficientfordownstrcam-travelingacousticwaves and

A_.k isthe upstream-runningacousticwave due to an

incominggust.Similarly,theothertwooutgoingwavesare
alinearcombinationoftheincomingwaves:

+ GI, kA_. k (18)

and

Go.t=A_kG_.k ÷Ai+.kG_._+G1.tG6.k. (19)

The new coefficients G_. k, G,_.k and G_.kare the resulting

gusts or vorticity waves due to an upstream-running acoustic
wave, a downstream-running acoustic wave and a gust,

respectively, incident on row k.

By defining the outgoing and incoming waves at
common interfaces between the blade rows, the outgoing
waves at row k are related to the incoming waves at adjacent

blade rows by

Ao._=A_k-t

+ _ +

Ao.k-A1.k+l

Go.k= GI.k+1

so that Equations 17 through 19 become

AT.k-1 +GI. Ab.k (20)

A+ + +Lk+l =AT.eR_ +A1.k_ +Gj.kA_,k (21)

... Gl, k+.l=Ai.kG_.k +As+.kG_.k+G1.kG_,k . (22)

For the blade rows neighboring the oscillating row, the
incoming waves may be split into known parts due to the
oscillation and unknown parts, indicated by hats, due-to the
ensuing interactions with the other blade rows:

&

GI,_ = GI,j+I + GMj

Then, for row j and its immediate neighbors, the system of

equations is, with all of the unknowns collected on the right
hand side and the known terms due to the motion of row j
on the left hand side,

+ + +

0 = -AI, j_ 1 +A_,y_2R_2 +AI,./._ 2_2 + GI, y-2A 6,:-2

+ A + :"2.+0 = -GL_-i +A_,:_2G_.j-2 :_.y-2"-'a./-2 + G_.y-2G6.:-2

- =-AT.,+ +
_+ +

A id+lRf+ l + GI.p-1A Gj+ 1

-Ah.:R__ _ = -A_.j + :47.j__R;_ + A_.:_, 7_, + G,._A;.j__ (23)

-A_._G;t.:__= -G_d+'AZ:-_G74.___+A_+..i--_G_.j___+

GLj-_G6.:-_

o= +
a,

+ + + +

A_.: =-A_._+_ +Ai.:Rf +A_.:_ + G_,_A_.:

G_: = -G_._t +AI_jG2 j +A_*jG_.: + G_,jG_.1

Assuming that three blade rows will be analyzed, the
present system of 9 equations has 15 unknowns because the
incoming waves to rows (/'-2) and (/'+2) are required. By
assuming that no waves internal to the system are reflected

by these two rows, Rf_2 =G_.k_ 2 =R_2 =A_._. 2 =0, and
that there are no waves incoming from sources external to

the system, A_.y__= G2._-2=A_.#.2 = 0, the number of
unknowns is reduced to 9. Thus the system of equations

may be solved for the incoming waves to each of the three
blade rows. Using coefficients provided by the isolated
blade row analysis which relate the moment on a blade to
the incoming waves, the unsteady moment on each blade
row k due to oscillation of row j - the influence coefficient

C_j - may then be determined. Similarly, by using the
waves generated by a unit amplitude gust acting on rowj as
the known terms in Equations 23, the gust coefficients

[CG]_j may also be determined.

In this investigation, Whitehead's (1987) linearized
subsonic flat plate cascade code, LINSUB, which is based on
Smith (1972), will be used to supply the required
aerodynamic quantities. It is based on assumptions of
inviscid, isentropic, subsonic flow through an isolated,
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infinite cascade of equally-spaced flat plate airfoils. The
airfoils are set at zero mean incidence so that the mean flow

is uniform, and the unsteady disturbances created by the
airfoil oscillations or incoming gusts are assumed to create
small unsteady disturbances to the mean flow, resulting in a
linear problem for the unsteady flow. LINSUB calculates
moment coefficients due to oscillation of the cascade or due

to incoming acoustic or vorticity gusts, and outgoing
acoustic and vorticity waves due to oscillation of the cascade
or due to incoming waves. Thus all the coefficients required

by Equation 23 can be obtained from LINSUB.

5 Results

This model for unsteady aerodynamic blade row
interaction will be applied to both the flutter and forced
response of the middle blade row in a system of three blade
rows. Before investigating these aeroelastic problems, the
predictio_ of the unsteady aerodynamic model will be
compared with the predictions of Kaji and Okazaki (1970)
for the outgoing acoustic wave amplitudes due to
rotor-stator interaction.

5.1 Acoustic wave generation by rotor-stator
interaction

Kaji and Okazaki investigated the unsteady
aerodynamic interaction of two rigid blade rows in motion
relative to one another for the purpose of predicting
rotor-stator interaction noise. The mean flow was a

uniform, compressible stream about two cascades of flat
plates aligned with the flow. They obtained a simultaneous
solution to the unsteady lift distributions on both of the
blade rows and determined the resulting outgoing acoustic
waves. For excitation of the downstream blade row by

wakes from the upstream row, the wake model of
Silverstein, Katzoff and Bullivant (1939) was used to specify

the wake velocity distribution at the leading edge of the
downstream blade row.

The stagger angles of the blade rows are

Y1 = -Y2 = 30 °, giving identical relative Mach numbers
for the two rows. The solidity of each row is 1 and the

reduced frequency is n. Comparison between the

predictions of the present method and those of Kaji and
Okazaki is shown in Figure 4. The amplitudes of the first
harmonic upstream and downstream acoustic waves are
shown as a function of the relative Mach number into the

blade rows and the axial gap between the blade rows as a
fraction of chord. There is generally good agreement

between the predictions for both of the axial gaps.

5.2 Flutter

To investigate the effects of unsteady aerodynamic
bladerow interaction on flutter, two configurations ofthree

bladerowswere analyzed.The firstconfigurationconsists

of a staggeredrotorplacedbetweenunstaggcredstators
while the second has an unstaggeredstatorbetween

staggeredrotors.To helpisolatevariouseffects,thestability
of the middleblade row willbe determinedfor three

different cases: (1) the middle row is treated as if it is an
isolated blade row, so there is no unsteady aerodynamic

coupling between the blade rows (the _C' solution); (2)
unsteady aerodynamic coupling occurs between the middle
row and its neighbors, but the neighboring blade rows are
rigid (the 'AC' solution); (3) unsteady aerodynamic
coupling occurs and the secondary blade rows are now
flexible, hence the blade rows are dynamically coupled (the
_DC' solution). Variation of the blade row spacing as a

technique for enhancing blade row stability will be
investigated.

System parameters for configuration I are shown in
Table I. The stators are unstaggered and the axial Mach
number relative to the stators is 0.4. Because the relative

flow is required to be aligned with the rotor and the rotor is
staggered 60 °, the rotor relative Mach number is 0.8. Rotor
velocity triangles were then used to find the rotor blade
Mach number, U/a=-0.693. For the rotor geometry, mean
flow conditions and reduced frequency 62 = 1, the acoustic
resonances occur at _2 = -20.3 ° and _2 = 146.4 ° . The radii
of gyration and mass ratios are similar to those used by
Chiang (1988), and are believed to be reasonable values for
titanium compressor blades. For the initial calculations, the
leading edge loci of the blade rows are at axial locations
-1.0, 0.1 and 1.5 chord, so there is a 0.1 chord axial gap
between the rotor and the upstream stator and a 0.9 chord
axial gap between the rotor and the downstream stator.
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Table 1 Blade row configuration I

: i: i:,i i ii :ii:,i!iiiiii!!!!iiiiiiiiii!iii':ii!iii

Stator 1 ::::Rotor Stator 2

1 2 3

1 1 I

1.5 1.4 1.5

0 60 0

0.4 0.8 0.4

0 -0.693 0

0.4 0.4 0.4

0.4 0.4 0.4

200 200 200

1 1 1

0.5% 0.5% 0.5%

To obtain an equation of motion for the isolated rotor,
the oscillations of the blade rows are decoupled by
m_ng the coefficient matrix A. In Equation 8, letting

j=2, n=3 and Cj_ = 0 for all k _j then substituting this A
matrix into Equation 11 results in

(S2 + C2_)ct2 = 0 (24)

for row 2. Thus the oscillations of the blade rows are

decoupled, but Equation 24 still retains the effects of
unsteady aerodynamic interaction between the blade rows

through the coefficient Cz_. Replacing C22 by the isolated
blade row motion-induced moment, C2, results in an

equation for the isolated rotor:
A

(52 + C2)(g2 = 0. (25)

_'2 is determined by solution of
A

Se + C2 = 0, (26)

then the oscillation frequency is found from

io_lco,2 = i/y_-_. Solutions obtained for the isolated blade

row response (NC solution) for 150 increments in I_z are

shown in Figure 5; the corresponding value of 132in degrees
is given adjacent to each point. The rotor is stable for all 132

(Re(ico2/co_2) <0). Subresonant values of the interblade
phase angle (132<-20.3 ° and 132> 146.4 °) are the most-
stable and form a relatively tight group of points near
Re(ic_2/_2) = --0.12. Except for 132= 150°, the
superresonant points form another group which is much
closer to _e neutral stability line. In particular, the points
600 -<132< i200 are relatively close to being unstable.

When aerodynamic coupling is taken into account, but
the neighboring blade rows are rigid (AC solution),

Equation 24 shows that the rotor frequency-of-oscillation

must satisfy

$2 + C22 = 0. (27)

However, for subresonant values of 132, all of the acoustic

waves decay with axial distance and are therefore neglected
in the analysis. Thus in the subresonant region the solutions
to Equation 27 will not differ from those to Equation 26.
The solutions for the superresonant interblade phase angles

have changed, Figure 6, and some of the roots indicate
flutter - the points 75° < _2 < 135 ° have all shifted fight far
enough that Re(ico:/co_:) > 0.

Solutions to Equation 11 without any simplification
(aerodynamic coupling with flexible neighboring blade
rows, the DC solution) are shown in Figure 7. About 5
minutes of computing time on a 80486 personal computer
was required t9 obtain these solutions. Now that all of the
blade rows are allowed to oscillate, there are three roots at
each superresonant interblade phase angle. Where two roots
are difficult to distinguish from one another, '(2)' is placed
next to the value of 132. Two distinct groups of roots are
shown in the figure - one group, with Im(ico2/co_:)= 1,

stretches horizontally across the plot while the second group
stretches vertically just to the stable side of the neutral
stability line. The first group is replotted in Figure 8 along
with the AC solution first shown in Figure 6. These two

solutions are effectively identical, implying that the
dynamics of the stator blades have a negligible effect on the
rotor stability. Upon inspection of the coefficient matrix A
for this configuration, it was found that the off-diagonal
terms were small relative to the diagonal terms, thus the
oscillations of the blade rows were effectively decoupled due
to weak unsteady aerodynamic interaction. Due to the
decoupling, the remaining solutions - the vertical group of
roots in Figure 7 - appear to be AC solutions for the stability
of the two stators. But the solutions for the stators are

nearly identical despite their differing locations in the
configuration, which indicates that unsteady aerodynamic
coupling effects on them are also negligible. The

frequencies of these solutions vary with interblade phase
angle because they are presented in terms of the rotor
frequency - the stators are oscillating near their natural
frequencies, but due to the motion of the rotor, the frequency
in the rotor frame varies with the interblade phase angle or
tangential wavenumber (Appendix B).

The rotor stability will vary with spacing between it and
the upstream stator, & Sample results for the present

configuration are shown in Figure 9; the positions of the
stators are fixed while the rotor position between them is

varied between _5/c---0(rotor leading edge coincident with

upstream stator trailing edge) and 8/c=1 ' (rotor trailing edge
coincident with downstream stator leading edge). Relative



to the isolated rotor solution, the unsteady aerodynamic

coupling effects are generally destabilizing, but for
8/c>0.68, a slight stabilizing effect occurs. The rotor is

unstable for 8/c<0.31. These results suggest that blade row
stability may be enhanced by variation of the blade row
spacing.

The-stabiiity of a second confi_afion--_ also

analyzed; configuration II, Table 2, consists of an
unstaggered stator between two identical rotor blade rows.
The blade row spacing was chosen so that a 1/2 chord axial
gap separates the stator from each of the neighboring rotors.
For the stator geometry, mean flow conditions and reduced

frequency _2 = 1, the resonant interblade phase angles are
±19.2 °, so the superresonant region is relatively small.
Figure 10 shows the NC solution for the stator along with
the AC solution. The stator is stable in both cases although

aerodynamic interaction makes it less stable for some 92.
However, if the rotors are allowed to vibrate, there are
dramatic changes in the solution. From Figure 11, the DC
solution has two unstable values of 132, 15° and 10°, and
introduces a number of other roots which are quite different
from those for the rigid rotors solutions. The dynamics of
the neighboring blade rows, which were negligible for

configuration I, play a crucial role in the stability of
configuration II.

Table 2 Blade row configuration II

 711ilili!iiTiiiiiiiiiiiiiTiiiiiTiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiii,i iil

''7! Tiiii!iiiiiiii!iii!iiii!!iii!iiiiiiii!iiiiiii!

 !iX   ];{!iiz{:,iiTiiTii: 3i: i::iiiiiiii  7i{i7ii :7!7i,:

R0t6r: 1 .stator Rotor2

1 2 3

1 1 1

1.5 1.3 1.5

60 0 60

0.8 0.4 0.8

-0.693 0 -0.693

0.5 0.5 0.5

0.4 0.4 0.4

200 200 200

1 1 1

0.5% 0.5% 0.5%

5.3 Forced response

To investigate the effects of unsteady aerodynamic

blade row interaction on forced response, calculations were
made for the first harmonic response of the stator in

configuration H due to the wakes of the upstream blade-row.
The first harmonic of the wake is assumed to have unity

amplitude. The stator reduced frequency is _2=16.32. In
contrast to the stability solution procedure, where ratio of
the oscillation frequency to the undamped natural frequency
was the solution, the oscillation frequency is now fixed and

the undamped natural frequency will be varied in order to
see how the response varies in the vicinity of resonance.

The fo/ced-resp6nse-6f the configuration II stator is

shown in Figure 12 as a function of _02/_2, the ratio of the
stator excitation frequency to the stator undamped natural
frequency. The response parameter is the ratio of the
oscillation amplitude with unsteady aerodynamic coupling
effects to the oscillation amplitude for the isolated stator. At
resonance, the AC response is nearly 45% greater than the
NC response. Away from resonance, the AC response is
still about 20% greater than the NC response. For this
configuration, the DC response was essentially identical to
the AC response - the oscillations of the rotors did not affect
the stator.

A brief parametric study of the effects of blade row
spacing an_rotor solidity on the stator forced response was
made. Configuration 1"Iwas used for this study along with
two confgurafions identical to it except for changes in the
rotor solidities. The gap between the stator and the
upstream rotor was varied between 0 and 1 chord; with a
gap of one chord, the stator trailing edge was coincident
with the leading edge of the downstream rotor. As shown in
Figure 13, the response of the stator can vary greatly with
these parameters. With the higher solidity rotors (
(c/sh = (c/s)3 = 1.55), the stator response amplitude varies

between exceeding the isolated stator response by nearly
60% to being 15% less than the isolated stator response. In
contrast, with the lower solidity rotors ((c/s)l = (c/s)3

=1.45), the stator response varies little with axial gap,
staying at about 13% greater than the isolated stator
response. The configuration II solution falls between these
two in both maximum response and fluctuation of the
response with blade row spacing. Although it might be
tempting to draw some conclusions from the trends of these
results, the very limited nature of this study, not to mention
the complexity of cascade unsteady aerodynamics, prohibit
this.

6 Summary and Conclusion

The effects of blade row unsteady aerodynamic
interaction on flutter and forced response have been
investigated. A model for interaction between any number
of blade rows was developed which relies upon unsteady
aerodynamic coefficients obtained from isolated blade row
analyses. Using influence coefficients which express the

unsteady forces on one blade row due to the motion of
another, a structural model was obtained which accounts for

coupling of the vibratory responses of multiple blade rows,



or dynamic coupling between the blade rows. A special case

of this model is obtained when neighbors of the blade row

under consideration are assumed to be rigid, but the

unsteady aerodynamic coupling between these neighbors is
retained.

This analysis technique was applied to two model

configurations, each consisting of three blade rows.

Stability solutions were found for the middle blade row of

each configuration. For the first configuration,

aerodynamic coupling had a destabilizing influence relative
to the isolated blade row solution - the isolated blade row

solution indicated stability but the unsteady aerodynamic

coupling solution indicated flutter. The additional effect of

dynamic coupling was negligible relative to the

aerodynamic coupling effect. In contrast, the dynamic

coupling analysis indicated flutter for the second
configuration while the unsteady aerodynamic coupling

solution and the isolated blade row solution both predicted

stability. It is concluded that both unsteady aerodynamic

coupling and dynamic coupling between blade rows can

have significant effects on blade row stability.

The forced response analysis was applied to one

baseline configuration. Significant increases in the response

amplitude were found to occur due to unsteady aerodynamic

coupling. A parametric study showed that blade row

spacing and solidity can have significant effects on the

response amplitude.
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Appendix A Linearized theory of cascade

wave propagation

The unsteady aerodynamic blade row interaction
analysis presented in this paper depends upon the ability to

predict the characteristics of waves traveling between the
blade rows, i.e., the amplitudes, phases and wavenumbers of
these disturbances must be known. While the wave

amplitudes must be determined by a numerical solution for
the isolated blade row unsteady aerodynamics (see

Whitehead (1987), Verdon (1990)), which is beyond the and
scope of this discussion, the wavenumbers and hence wave
properties such as spatial decay rates may be determined
with some analysis.

The flow is assumed to be inviscid, isentropic,
two-dimensional and subsonic. In addition, the mean flow
is assumed to be uniform; although this assumption may

appear questionable, it is consistent with current linearized
cascade analyses which assume that regions of uniform flow
exist at some distance upstream and downstream of the
cascade. Unsteady disturbances are assumed to be small
perturbations to the mean flow field, resulting in a system of
first order linear partial differential equations for the
unknown perturbation quantities. When harmonic solutions
which satisfy cascade periodicity are assumed, a system of
linear equations is obtained which may be solved for the
disturbance wavenumbers.

The mass conservation equation is, for the _,rl where
coordinate system of Figure 3,

D'-'T+ 9 + = O. (A-l)

The momentum equations are

Du 10p

Dt 9 0_

and

(A-2)

Dv = 1 Op (A-3)
Dt o_

u is the g component of velocity, v is the rl component of
velocity, P is the density and

D_O 0 0
D-'_= -_ + u-_ + v-_.

Using the subscript 0 to denote the constant mean values
and 1 for the perturbations,

0=90+01, l/= U0+Ul, ...

are substituted into the governing conservation equations.
Once the equations are expanded and products of

perturbations are neglected, a system of linear partial
differential equations results with the perturbation quantities

as the dependent variables. Conservation of mass becomes

Dop_ +- (Oul a,,l_
"-DT- vo_,-_+--_)=0. (A..4)

The momentum equations become

Dou.......!t= 1 0pI (A-5)
Dt 0o

Dov.......!=. 1 Opl (A-6)
Dt Po 0vI

with the operator

Do_ 0 0 0
= 9-7+uo +voN

To close the system of equations, the speed of sound for "

isentropic flow of a calorically perfect gas, a, is introduced.

a2 ( Op'_ dp (A-7)
= k_--_o)= d"-_

Expanding Equations A-4 through A-6 and using A-7 to
replace derivatives of P_ with derivatives ofp_ gives

Oq + Aaq + BO_q= 0 (A-8)
Ot O_ orl

q = (pl,ut,vl) r

A_

I u0 poa 2 0 ]
119o uo 0

0 0 uo

and

I v0 0 poa 2 ]
B= 0 vo 0 •

l/po 0 vo

The dependent variables are assumed to depend
harmonically on the spatial position and the time. Thus the

pressure perturbation is expressed as

pl =P=Te_(°)t+tg+m'q)

where_'Tisthepressuredisturbanceamplitude,i=

and 1and m arc theaxialand tangentialwave numbers,

respectively.Analogousrelationsarcusedforuiand vl.
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Substituting the perturbation expressions into Equation
A-8, a system of linear algebraic equations is obtained;

io..,+_o.. o..lI lI/po to+uol+vom _ :0. (A-9)

mlpo o_+ uol + vom

To obtaina non-trivialsolutiontothislinearsystem,the

determinantofthecoefficientmatrixinEquationA-9 isset

equalto0:

(co+ uol+vom)[(co+ uol+vom)2-a2(/2+m2)]= 0. (A-10)

The two solutionstoEquationA-10,

and

co+ uol+vom = 0 (A-II)

(CO+ U0I + vom) 2 = a2(l 2 + m 2) (A-12)

encompass different physical phenomena.

From the momentum equations, relations between
pressure and velocity fluctuations are obtained:

= -_(co +uol+ yore)F7

P0
= --_(co+ uol+ vom)VT. (A-13)

Hence forthesolutionofEquationA-10 obtainedspecified

by EquationA-II, the pressurefluctuationsare,from

EquationA-13,zero,butthevorticityis

q_l= _i 0ul

= i(l_-m u-'_e_(°t+_,*'m). (A-14)

The phase velocityof thisdisturbanceisdeterminedby

trackinga constantdisturbancephase. In thisreference

frame,thephasedoesnotchangewithtime:

d(cot +/_ + = 0mYl)

or

co+ Id-_t+ m d_- = 0. (A-15)

Combining Equations A-15 and A-11 to eliminate co results
in

+mdn _
dt "_ - uol + vom.

(A-16)

Thus the _ and 11componentsof the phasevelocityarc

equaltothemean flowvelocitycomponentsuo and vo.

Thissolutioncorrespondstoconvectionofvorticityby the

mean flowwithno associatedpressurefluctuations.

For nonzero pressure disturbances, Equation A-13
implies co+uoi+vom_O which is true of the second
solution, Equation A212_ From Equations A-17, m_ = lV_.

Substituting this into Equation A-14, it follows that the
vorticity is zero; the second solution therefore corresponds

to irrotational pressure perturbations.

Equation A-12 may be solved for the axial wave
number:

uo(co+ vom) :t:a / (_ +vom) 2 - (a 2 - u_)m2
I= (A-17)

£/2 _ Ul

The tangential wavenumber must satisfy cascade periodicity,
and therefore be compatible with the interblade phase angle
13. Hence

ms=_+2wr, r=O, ±1, ±2 .... (A-18)

where s is the cascade spacing. Because m depends upon
real quantifies, it is also real.

The nature of acoustic wave propagation depends upon

I. From Equation A-17, ff (co+vom)2-(a2-u20)m 2< O,

then I will be complex. Let l = Ine + il TM so that

P 1 = "ff_ei(°t+(l_+il_)_+m'q)

= _'Te-la'_ei(°_t+Pg+"m) (A- 19)

which indicates that the wave either grows or decays
exponentially with axial distance. The amplifying wave
solution is commonly disallowed on the basis that it is not
physically acceptable (Fang and Atassi (1993), Verdon
(1987)), leaving only the decaying wave solution. If
(co+vorn)2-(a2-ug)m:>O, l is real and the acoustic

waves will propagate unattenuated, one upstream (for the (-)
sign in Equation A-17) and one downstream (for the + sign
in Equation A-17) - see Whitehead (1987). At the acoustic
resonance or cutoff condition, (co+ vom) 2 = (a 2 - u2)m 2.

Solving for rn¢, the tangential wavenumber at cutoff,

m,-m.,off==[ -_--_ J

or

(A-20)
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Appendix B Frequency relations and
scattedng effects

Let a disturbance be described as

B = Bexp[i(olt+l_l +mrl0] 03-1)

in a _,11_ reference frame moving at velocity

v_ = 0, vn, = Ui with reslx_ to a fixed _,rl coordinate
system. Let a second reference frame with coordinates

_2, r12 have velocity V_e= 0, Vn: = U_ with respect to the

_,rl coordinates. Thus

and

% = _ 03-2)

forj=l,2.
for j=2, then equating the results gives

_l = _2 + (U2 - U1)t. 03-4)

Substituting B-2 and B-4 into B-1 yields

B = B exp {i[coit +/_u + m(rl 2+ (U2 - U0t)]}

=Bexp{i[(ol +re(U2- Ui))t +l_z+mrlz]}. 03-5)

rl = _ + U/ 03-3)

Using Equation B-3 twice, first forj=l and then

B-6 implies that o2, the frequency in the second reference
frame, is

0o2= 0o|+re(U2 - U_). 03-6)

Thus the frequencies generally differ due to relative
tangential motion between blade rows, with the frequency
shift depending upon the tangential wavenumber m in
addition to the velocity difference.

The appearance of m in equation B-6 has important
consequences when scattering effects are considered. As an
example, consider the first harmonic forced response of a
stator (row 2) by the wakes from an upstream rotor (row 1).
For the first harmonic of the wake, the tangential
wavenumber is

27g
m = -- 03-7)

S1

where s_ is the rotor blade spacing. Since Uu=0, the
excitation frequency of the stator is, from Equation B-6,

cos = 0ol -mU1. 03-8)

But the wake disturbance fr.equency is zero in the rotor
frame so 0ol =0 and

2n 03-9)0o2= -mU1 = --_TUI

Waves created by interaction of the gust with the stator must

satisfy the interblade phase angle imposed by the gust, i.e.,

mqs2 = 132+ 2rrz/, q = +1, :k2.... 03-10)

where mq is the tangential wavenumber of a scattered wave
and

132= ms2 = 2ns_. 03-11)

Substituting B-1 1 into B-10 and rearranging yields

mq = 27t(1+ q ) 03-12)

Using Equations B-8 and B-12, any of these scattered waves

incident on the rotor will be at frequencies (in the rotor
frame)

O1q = 0o 2 +mqUl

= (mq -m)Ul

2_q U .= _ , 03-13)

The rotor will scatter the incident waves to wavenumbers

mq,r=mq+-_l r = 0,+1,+_.2.... 03-14)

= 27t(1+, + q'_

at frequencies according to Equation B-13. Finally, the
m q'r waves coming from the rotor will excite the stator at
frequencies

03_ = 0Oq - mq'ru1

2rt(1 +r)
U_. (B-15)

$1

The point of this example is that scattering at the rotor
affects the frequencies seen by the stator and vice versa. As
shown by Equation B-15, waves scattered at the rotor (i.e.,
r _ 0) return to the stator at a frequency which differs from
o2, the frequency of interest, as given by Equation B-9.
Upon further scattering, some of wave energy will return to
the frequency co2 - this effect is neglected in this paper.
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